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Background. To ameliorate the antibiotic resistance crisis, the drivers of resistance emergence and resistance spread must be
better understood.

Methods. Whole-genome sequencing and susceptibility testing were performed on clinical carbapenem-resistant Klebsiella
pneumoniae isolates collected from August 2014 to July 2015 across 12 long-term acute care hospitals. Ancestral state
reconstruction partitioned patients with resistant strains into those that likely acquired resistance via de novo evolution or
cross-transmission. Logistic regression was used to evaluate the associations between patient characteristics/exposures and
these 2 pathways: resistance due to predicted within-host emergence of resistance and resistance due to predicted cross-
transmission. This framework is available in the user-friendly R package, phyloAMR (https://github.com/kylegontjes/
phyloAMR).

Results. Phylogenetic analysis of 386 epidemic lineage carbapenem-resistant K. pneumoniae sequence type 258 isolates
revealed differences in the relative contribution of de novo evolution and cross-transmission to the burden of resistance to 5
antibiotics. Clade-specific variations in rates of resistance emergence and their frequency and magnitude of spread were
detected for each antibiotic. Phylogenetically informed regression modeling identified distinct clinical risk factors associated
with each pathway. Exposure to the cognate antibiotic was an independent risk factor for resistance emergence
(trimethoprim-sulfamethoxazole, colistin, and novel beta-lactam/beta-lactamase inhibitors) and resistance spread
(trimethoprim-sulfamethoxazole, amikacin, and colistin). In addition to antibiotic exposures, comorbidities (eg, stage IV +
decubitus ulcers) and indwelling medical devices (eg, gastrostomy tubes) were detected as unique risk factors for resistance
spread.

Conclusions. Phylogenetic contextualization generated insights and hypotheses into how bacterial genetic background,
patient characteristics, and clinical practices influence the emergence and spread of antibiotic resistance.
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Antibiotic resistance is a significant public health challenge [1].
The development of infections with antibiotic-resistant patho-
gens significantly reduces treatment options and clinical cure
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rates. Of greatest concern are multidrug-resistant lineages
that have evolved resistance to multiple classes of antibiotics
and disseminated worldwide [2].

The increasing problem of antibiotic resistance demands ur-
gent clarity on the precise drivers of resistance proliferation. To
this end, previous studies have sought to identify risk factors as-
sociated with harboring a pathogen that exhibits resistance [3-5].
This approach has a significant limitation—it overlooks the
distinct routes to the acquisition of resistance, notably de novo
evolution (ie, the emergence of a unique resistant strain spon-
taneously in an individual via chromosomal mutation or the
acquisition of mobile genetic elements) and cross-transmission
of circulating resistant lineages (ie, the acquisition of a resistant
strain that is epidemiologically linked to other individuals)
[6-8]. These pathways call for distinct intervention strategies.
For example, judicious antimicrobial stewardship may be
useful to reduce selection for de novo resistance evolution,
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whereas measures to minimize cross-transmission include pa-
tient cohorting, hand hygiene compliance, and contact isolation
[9-12]. A deeper understanding of these pathways to resistance
acquisition will facilitate the application of tailored prevention
strategies and sharpen our comprehension of how bacterial ge-
netic background, patient characteristics, and medical practices
drive the emergence and spread of antibiotic resistance.

Here, we developed an approach that uses phylogenetic con-
text to partition antibiotic-resistant isolates into those putative-
ly derived from de novo evolution versus cross-transmission.
We then applied this method to understand drivers of these 2
pathways to resistance in the epidemic carbapenem-resistant
Klebsiella pneumoniae (CRKP) sequence type 258 (ST258) lin-
eage, using a comprehensive collection of clinical isolates and
patient metadata collected over 1 year from a network of long-
term acute care hospitals (LTACHs). The emergence and
spread of 5 critical antibiotic resistance phenotypes were iden-
tified, with the CRKP ST258 sublineage, antibiotic exposures,
and patient clinical characteristics being differentially associat-
ed with the emergence and spread of each phenotype.

METHODS

Sample Collection

Clinical CRKP isolates were obtained from 1 August 2014, to 25
July 2015, at 12 southern California LTACHs [13]. Bacterial
isolates from blood, respiratory, urine, and wound cultures
identified as K. pneumoniae were tested for phenotypic carba-
penem resistance using the 2015 Centers for Disease Control
and Prevention criteria [13].

Clinical Metadata Collection

Clinical metadata were extracted from electronic medical re-
cords, as described previously [13]. Patient demographics,
medical comorbidities, and indwelling medical devices were re-
corded at specimen collection, along with antibiotic exposures
up to 30 days prior to specimen collection. Antibiotic exposure
data were available only during a patient’s stay in the LTACH.

Antibiotic Susceptibility Testing

Antibiotic susceptibility testing was performed for 2 aminoglyco-
sides, colistin, trimethoprim-sulfamethoxazole (TMP-SMX), and
2 recently approved [-lactam/B-lactamase inhibitor (BL/BLI)
combinations that were not clinically available at the time of speci-
men collection. Susceptibility profiles for TMP-SMX and genta-
micin were extracted from regional microbiology laboratory
records. Susceptibility to amikacin, colistin, imipenem-relebac-
tam, and meropenem-vaborbactam was determined using broth
microdilution (SENSITITRE, Thermo Scientific) [14]. Antibiotic
resistance was defined as a minimum inhibitory concentration
within the intermediate or resistant category by the 2021
Clinical and Laboratory Standards Institute interpretative criteria

for all antibiotics except TMP-SMX [14], for which resistance was
defined as a minimum inhibitory concentration >16/80 ug/mL
(Supplementary Table 1). Resistance to BL/BLI agents was defined
as resistance to imipenem-relebactam and/or meropenem-
vaborbactam.

Whole-Genome Sequencing

Whole-genome sequencing of bacterial isolates was performed,
as described previously [13]. The maximum-likelihood phylogeny
was reconstructed from Gubbins-recombination filtered polymor-
phic sites using a custom, in-house Snakemake pipeline (https:/
github.com/Snitkin-Lab-Umich/phylokit) [15-24]. Details on
whole-genome sequencing, variant calling, and phylogenetic tree
reconstruction are present in Supplementary Methods.

Phylogenetic Analysis of Antibiotic Resistance Using Joint Ancestral
State Reconstruction

We developed the open-source R package, phyloAMR, to study
the emergence and spread of antibiotic resistance (https://
github.com/kylegontjes/phyloAMR).

PhyloAMR’s core function, asr, leveraged ancestral state re-
construction to characterize the evolution of resistance across
the phylogeny. The model with the lowest sample size—correct-
ed Akaike information criterion (AICc) was used for joint
ancestral state reconstruction using corHMM [25]. Edges on
the phylogeny were evaluated to determine episodes where
the trait continued (ie, susceptible—susceptible or resistant—
resistant), was gained (ie, susceptible—resistant), or was lost
(ie, resistant—susceptible).

PhyloAMR’s phylogenetic tree traversal algorithm, asr_clus-
ter_detection, inferred the evolutionary history of antibiotic re-
sistance. This algorithm classifies trait-containing isolates as
phylogenetic singletons (ie, evidence of de novo evolution of
a trait) or members of a phylogenetic cluster of the trait (ie, ev-
idence that the trait was inherited from a common ancestor of
circulating trait-containing lineage). Resistant isolates with
gain events inferred at the tip were classified as phylogenetic
singletons. However, these isolates were eligible for classifica-
tion as members of a phylogenetic cluster if a reversion event
was detected at its parental node. Resistant isolates were classi-
fied as members of a phylogenetic cluster if their ancestral gain
event was shared with at least one additional resistant isolate.
Resistant isolates that did not share an ancestral gain event
were classified as phylogenetic singletons. Phylogenetic clusters
where all isolates belonged to one patient were reclassified as
redundant phylogenetic singletons.

To describe the evolutionary history of antibiotic resistance, the
transitional data and phylogenetic clustering of each phenotype
were characterized. Specifically, the frequency of resistance gain,
loss, and continuation events was determined using phyoAMR’s
asr_transition_analysis function. Descriptive statistics for phylo-
genetic clustering were generated using phyloAMR’s asr_cluster_-
analysis function (see Supplementary Materials).
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Testing for Heterogeneous Rates of Antibiotic Resistance Across Clades
To further evaluate the influence of genetic background on the
evolution of antibiotic resistance, we tested whether differences
in rates of resistance evolution exist across the 2 clades of
ST258. To achieve this, we utilized phytool’s fitmultiMK func-
tion, which implements a modified Markov model that allows
for heterogeneous rates of discrete character evolution across
user-specified regions on the phylogeny [26, 27]. For each phe-
notype, a fitmultiMK model was constructed with a single
regime, indicative of uniform rates of resistance evolution
across the phylogeny. Next, a fitmultiMK model was construct-
ed with 2 regimes, permitting each clade to have distinct rates
of resistance evolution. The fit of the single- and multi-regime
models was compared using the likelihood ratio test. Finally,
hidden-rate modeling using corHMM, a data-driven approach,
was performed to validate the presence of 2 distinct rate classes.
Support for the existence of 2 rate classes was determined by
comparing the AICc of the models. For these analyses, we fit
2 model structures: equal rates and all rates differerent.

Identification of Risk Factors for Resistance Emergence and Spread
Logistic regression modeling was performed to evaluate the as-
sociation between genetic background, patient demographics,
and clinical variables with the primary resistance outcomes of
crude resistance and our 2 phylogenetically informed classifica-
tions of resistance. For each phenotype, patients with resistant
isolates were partitioned as acquiring resistance via putative in
vivo emergence (ie, phylogenetic singletons) or the acquisition
of a strain belonging to a resistant lineage (ie, members of a
phylogenetic cluster), presumably due to a cross-transmission
event. For patients with more than one isolate, their first isolate
was selected unless they contributed a later resistant isolate, in
which case the resistant isolate was chosen. Patients contribut-
ing only susceptible isolates served as the reference group.

First, logistic regression was performed to evaluate the asso-
ciation between these outcomes and 3 explanatory variables:
prior exposure to the resistance phenotype’s cognate antibiotic,
exposure to dysbiotic antibiotics, and having an isolate belong-
ing to clade I of ST258. Exposure to dysbiotic agents—drugs
that increase the risk for disruption of the gut microbiota and
Clostridioides difficile infection—was defined as having a histo-
ry of exposure to at least one of the following antibiotics: cefe-
pime, ceftaroline, ceftazidime, ceftriaxone, ciprofloxacin,
ertapenem, metronidazole, levofloxacin, meropenem, imipe-
nem, and piperacillin/tazobactam [28, 29]. Antibiotic exposure
history was binarized as the receipt of >1 day of therapy in the
past 30 days. Regression models evaluating the association be-
tween our resistance outcomes and antimicrobial exposures
were adjusted for patient age and sex.

Next, we performed data-driven, multivariable regression
modeling to identify shared and unique risk factors for our re-
sistance outcomes [30]. Eligible variables included patient

demographics, clinical comorbidities, indwelling medical devic-
es, and antibiotic exposure histories (Supplementary Table 2).
First, unadjusted logistic regression was performed. Next, all var-
iables with an unadjusted P-value of <.20 were included in a lo-
gistic regression model. An iterative process removed variables if
their P-value was >.10. After compiling this model, all initially
ineligible variables were iteratively included in the model and re-
tained if their P-value was <.10 .

Data Analysis and Visualization

All data analysis and visualization, unless otherwise stated,
were performed using R version 4.5.0 [31]. The ggplot2 and
ggnewscale packages were used to generate common figures
[32, 33]. Phylogenetic visualizations were generated using
ape, phytools, and ggtree [26, 34, 35]. Descriptive tables were
created using tableone [36]. Forest plots were generated using
forestplot [37]. Multipanel figures were constructed using cow-
plot [38]. Code for this project is available at https:/github.
com/kylegontjes/phylogenetic-resistance-ms/.

RESULTS

Study Population

A total of 386 clinical CRKP ST258 isolates were collected from
312 patients across 12 California LTACHs over nearly 12
months (Supplementary Figure 1A and 1B). Fifty-five patients
(17.6%) contributed more than one isolate during the study pe-
riod (Supplementary Figure 1C). On first isolate collection, the
median age was 72.7 years (interquartile range [IQR], 18.2 years),
and 149 (47.8%) were female. Most patients had at least one in-
dwelling medical device (87.8%), multiple medical comorbidities
(64.4%), and received antibiotics in the 30 days preceding isolate
collection (72.8%). The median LTACH length of stay before
clinical culture was 21 days (IQR, 37 days). Cohort characteristics
are provided in Supplementary Table 3.

Antibiotic Susceptibility Profiles

On application of clinical breakpoints, resistance was observed
in 207 (53.6%) to TMP-SMX, 199 (51.6%) to gentamicin, 132
(34.2%) to amikacin, 129 (33.4%) to colistin, and 56 (14.5%)
to novel BL/BLI combinations (meropenem-vaborbactam, 39
[10.1%]; imipenem-relebactam, 36 [9.3%]) (Supplementary
Figure 1D). Minimum-inhibitory concentration distributions
are reported in Supplementary Figure 2.

Whole-Genome Sequencing Revealed Variable Phylogenetic Clustering of
Resistance

We implemented a phylogenetic algorithm to characterize the
emergence and spread of antibiotic resistance in this densely
sampled population (Figure 1A). Overlaying resistance on the
phylogeny revealed numerous independent episodes of resis-
tance emergence and spread for each antibiotic (Figure 1B).
Quantification using our ancestral state reconstruction-
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Figure 1. Phylogenetic characterization of resistance revealed differential patterns of resistance emergence and spread for 5 antibiotic phenotypes among clinical
carbapenem-resistant Klebsiella pneumoniae sequence type 258 isolates. A, Ancestral character estimation was performed to characterize the phylogenetic clustering
of antibiotic resistance. Phenotypes were binarized into susceptible and resistant using clinical breakpoints. Resistance was inferred at internal nodes using corHMM s joint
ancestral reconstruction algorithm. The phylogenetic tree was traversed from parent to child node to determine episodes of trait continuation (ie, susceptible—susceptible
and resistant—resistant), gain events (eg, susceptible—resistant), and loss events (ie, resistant—susceptible). Resistant isolates were inferred as phylogenetic singletons if
the resistant gain event was inferred at the tip with no history of susceptible reversion at their parental node or the resistant isolate did not share its gain event with another
isolate. Resistant isolates were classified as members of a phylogenetic cluster if their gain event was shared with at least one additional resistant isolate. Lineages where
all resistant isolates belonged to one patient were reclassified as redundant resistant singletons. This schematic was generated using BioRender. B, Resistance overlaid
across the K. pneumoniae sequence type 258 phylogeny. C, Phylogenetic clustering of resistance, as inferred from the ancestral state reconstruction algorithm, was overlaid
across the phylogenetic tree. D, Phylogenetic transition and (£) clustering statistics for each antibiotic. The frequency of phylogenetic occurrence accounts for the number of
episodes a trait occurs across the phylogenetic tree (ie, clusters + singleton events) relative to the total number of possible events (ie, clusters + singleton events + isolates
without the trait). The frequency of clustering characterizes the proportion of phylogenetic events that are phylogenetic clusters. Abbreviations: BL/BLI, beta-lactam/beta-
lactamase inhibitor; NS, resistance; TMP-SMX, trimethoprim-sulfamethoxazole.
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A Phenotype Susceptible Resistance Category Outcome OR (95% CI)

TMP-SMX
74 (52.1) Presence 32 (18.8) 0.21(0.13-0.35) -
Emergence 14 (50.0) 0.92(0.41-2.08) —
Spread 18 (12.7) 0.13 (0.07-0.24) ——
Gentamicin
77 (54.6) Presence 28 (16.4) 0.16(0.10-0.27) ——
Emergence 13 (68.4) 1.80(0.67-5.37) —_—
Spread 15(9.9)  0.09 (0.05-0.17) —.
Amikacin
36 (18.7) Presence 71 (59.7) 6.45(3.89-10.90) —
Emergence 12 (36.4) 2.49 (1.10-5.47) ——
Spread 59 (68.6) 9.53 (5.39-17.30) ——
Colistin
88 (43.8) Presence 18 (16.2) 0.25 (0.14-0.43) o
Emergence 13 (65.0) 2.38 (0.94-6.58) —_——
Spread 5 (5.5) 0.07 (0.03-0.17) —
BL/BLI
75 (28.6) Presence 32 (64.0) 4.43(2.37-8.52) ——
Emergence 15 (48.4) 2.34 (1.09-4.99) ——
Spread 17 (89.5) 21.19 (5.89-135.76) ——
1 1. T T 1T 1T T 1T 1T T T 1
0.031 0.125 0.500 2e+00 8e+00 3e+01 1e+02
Unadjusted Odds Ratio (OR)
B Phenotype Susceptible Resistance Category Outcome aOR (95% CI)
TMP-SMX
1(0.7) Presence 11 (6.5)  10.22 (1.94-188.29)
Emergence 2(7.1) 20.25 (1.74-470.26) =
Spread 9 (6.3) 9.57 (1.76-177.86)
Gentamicin
33 (23.4) Presence 30 (17.5) 0.71(0.40-1.25) ——
Emergence 4(21.1) 0.79 (0.21-2.39) —_—
Spread 26 (17.1)  0.71 (0.39-1.27) ——
Amikacin
30 (15.5) Presence 32 (26.9) 2.04(1.15-3.62) o
Emergence 9(27.3) 2.11 (0.84-5.01) —_—
Spread 23 (26.7) 2.01 (1.07-3.77) —
Colistin
16 (8.0) Presence 22 (19.8) 3.00(1.49-6.16) ——
Emergence 6 (30.0) 4.67 (1.47-13.69) —_—
Spread 16 (17.6) 2.65 (1.24-5.70) ——
BL/BLI
79 (30.2) Presence 23 (46.0) 2.08 (1.10-3.92) —
Emergence 15(48.4) 2.26 (1.05-4.88) ——
Spread 8 (42.1) 1.80 (0.66-4.73) — T'I—l- — —r— |
0.25 1.0 2.0 4.0 8.0 16.0 64.0 256.0
Adjusted Odds Ratio (aOR)
Cc Phenotype Susceptible Resistance Category Outcome aOR (95% Cl)
TMP-SMX
55 (38.7) Presence 55(32.4) 0.74 (0.46-1.19) ——
Emergence 8 (28.6) 0.59 (0.23-1.42) —_—
Spread 47 (33.1) 0.77 (0.47-1.25) —
Gentamicin
55 (39.0) Presence 56 (32.7) 0.77 (0.48-1.23) —
Emergence 5(26.3) 0.53 (0.16-1.48) =
Spread 51 (33.6) 0.80 (0.50-1.30) ——
Amikacin
69 (35.8) Presence 41(345) 0.95 (0.58-1.52) —.—
Emergence 5(15.2) 0.32 (0.10-0.80) =
Spread 36(41.9) 1.30(0.77-2.19) —
Colistin
71(35.3) Presence 40 (36.0) 1.03 (0.63-1.68) —_——
Emergence 8(40.0) 1.15 (0.43-2.93) =
Spread 32(35.2) 0.99 (0.59-1.67) .
BL/BLI
89 (34.0) Presence 22 (44.0) 1.58 (0.84-2.96) -
Emergence 12 (38.7) 1.23 (0.55-2.64) _—
Spread 10 (52.6) 2.33(0.89-6.18) ot

Figure 2. Influence of genetic background and antibiotic exposures on the emergence and spread of resistant lineages. Logistic regression was used to analyze the association
between our resistance outcomes and (4) having an isolate belonging to clade | of the sequence type 258 phylogeny, (B) exposure to cognate antibiotics, and (C) exposure to dysbiotic
antibiotics. For patients with more than one isolate, the first resistant isolate was retained. Each outcome (resistant, emergence, and spread) was compared with susceptible isolates.
Exposure to an outcome's cognate antibiotic was defined as follows: TMP-SMX for TMP-SMX, aminoglycoside exposure for gentamicin and amikacin, polymyxin exposure for colistin,
and carbapenem exposure for resistance to BL/BLI agents. Exposure to a dysbiotic agent was defined as a history of exposure to at least one of the following antibiotics: cefepime,
ceftaroline, ceftazidime, ceftriaxone, ciprofloxacin, ertapenem, metronidazole, levofloxacin, meropenem, imipenem, and piperacillin/tazobactam [30, 31]. Models for antibiotic expo-
sures were adjusted for patient sex and age at culture collection. Abbreviations: BL/BLI, beta-lactam/beta-lactamase inhibitor; OR, odds ratio; TMP-SMX, trimethoprim-

sulfamethoxazole.

0.12 0.25 0.50 1.0 2.0 4.0
Adjusted Odds Ratio (aOR)
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informed algorithm revealed differences in the number, size,
and spatiotemporal overlap of resistant clusters for each antibi-
otic (Figure 1C-E; Supplementary Figures 3 and 4), suggesting
differential propensities for resistance to emerge and spread.
Indeed, ancestral state reconstruction produced evolutionary
models with evolutionary rates that varied in magnitude
(Supplementary Table 4), further supporting differences in
emergence rates across antibiotics. The ancestral states and
phylogenetic clustering of each phenotype were overlaid on
the phylogeny in Supplementary Figure 5.

In addition to differences across antibiotics, we also observed
differences in phylogenetic clustering between the 2 major
ST258 clades (Figure 2A; Supplementary Table 5). Testing for
heterogeneity in evolutionary rates supported a role for the ge-
netic background of ST258 in shaping the emergence and
spread of antibacterial resistance, with differences between
the 2 clades in the rates of resistance evolution and reversion
to susceptibility observed for gentamicin, amikacin, colistin,
and BL/BLI agents (Supplementary Table 6). Data-driven mod-
eling of rate heterogeneity using corHMM also supported the
existence of distinct evolutionary rates of resistance across
this phylogeny (Supplementary Table 7). Lastly, we employed
logistic regression to evaluate the association of ST258 clade
with the emergence and spread of resistance. On unadjusted re-
gression, clade I was positively associated with the following
outcomes: amikacin resistance emergence (odds ratio [OR],
2.49; 95% CI, 1.10-5.47), amikacin resistance spread (OR,
9.53; 95% CI, 5.39-17.30), BL/BLI resistance emergence
(OR, 2.34; 95% CI, 1.09-4.99) and BL/BLI resistance spread
(OR, 21.19; 95% CI, 5.89-135.76). Conversely, clade II was pos-
itively associated with the following outcomes: TMP-SMX resis-
tance spread (OR, 7.50; 95% CI, 4.22-13.91), gentamicin
resistance spread (OR, 10.99; 95% CI, 6.01-21.24), and colistin
resistance spread (OR, 13.39; 95% CI, 5.72-39.27).

Phylogenetically Informed Risk Factor Analysis Revealed Shared and
Unique Risk Factors Associated With the Emergence and Spread of
Antibiotic Resistance

Having identified cases of resistance emergence and spread, we
next explored whether differential risk factors exist across these
2 groups: phylogenetic singletons (ie, resistance emergence)
and clusters (ie, spread of circulating resistant lineages).
Initially focusing on antibiotic use, we postulated that exposure
to cognate antibiotics would be preferentially associated with
selection for resistance emergence. After adjusting for age
and sex, cognate antibiotic exposure was positively associated
with resistance emergence for TMP-SMX (adjusted OR
[aOR], 20.25; 95% CI, 1.74-470.26), colistin (aOR, 4.67; 95%
CI, 1.47-13.69), and BL/BLI agents (aOR, 2.26; 95% CI, 1.05-
4.88) (Figure 2B). Interestingly, cognate antibiotic exposure
was also positively associated with resistance spread for
TMP-SMX (aOR, 9.57, 95% CI, 1.76-177.86), colistin (aOR,

2.65, 95% CI, 1.24-5.70), and amikacin (aOR, 2.01, 95% CI,
1.07-3.77). As microbiome-disrupting antibiotics can increase
susceptibility to colonization with multidrug-resistant organ-
isms, we tested whether these antibiotics were associated with
the spread of antibiotic-resistant lineages. No statistically sig-
nificant, positive association was detected (Figure 2C).

To more broadly identify clinical and patient factors that
drive the emergence and spread of antibiotic resistance,
we performed data-driven, multivariable regression modeling
(Table 1; Supplementary Table 8). In addition, models were con-
structed that did not consider phylogenetic context (ie, phenotyp-
ic resistance) to understand how phylogenetic contextualization
might provide nuance beyond the standard approach.
Inspection of multivariable models revealed risk factors with pos-
itive associations for the emergence and spread of resistance
(Figure 3). Cognate antibiotic exposures were detected in both re-
sistance emergence and spread models. Trimethoprim-sulfame-
thoxazole exposure was associated with the emergence and
spread of resistance to TMP-SMX. Tobramycin and gentamicin,
2 aminoglycoside antibiotics, were associated with the emergence
and spread of amikacin resistance. Exposure to polymyxin antibi-
otics was associated with colistin emergence and spread.
Increased age was positively associated with the emergence and
spread of resistance to BL/BLI agents.

Independent risk factors in resistant models tended to segre-
gate into emergence or spread models, supporting the hypoth-
esis that the standard approach imprecisely merges 2 distinct
populations (Figure 3). Several variables were identified as in-
dependent risk factors for the emergence of resistance, but
not its spread. Antibiotic exposures were often associated
with the emergence of resistance. Tigecycline was associated
with emergence of resistance to TMP-SMX, colistin, and BL/
BLI agents. Exposure to carbapenems was associated with the
emergence of resistance to BL/BLI agents but not spread.
Additional risk factors that were unique to resistance emer-
gence were detected, notably associations between congestive
heart failure and the emergence of gentamicin resistance and
malignancy with the emergence of amikacin resistance.

While models for resistance spread included exposure to an-
tibiotics, additional proxies for complexity of care, notably pa-
tient comorbidities and indwelling medical devices, were
uniquely associated with resistance spread. The presence of
stage IV+ decubitus ulcers was associated with the spread of re-
sistance to TMP-SMX and gentamicin. Chronic respiratory co-
morbidities, specifically the presence of chronic obstructive
pulmonary disorder or chronic bronchitis, were associated
with the spread of amikacin and BL/BLI resistance. This co-
morbidity was also associated with the emergence of colistin re-
sistance. Indwelling medical devices were also often associated
with the spread of resistant lineages, with presence of a gastro-
stomy and tracheostomy associated with the spread of TMP-
SMX resistance, while presence of an indwelling urinary
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Figure 3. Shared and unique risk factors for the emergence and spread of antibiotic resistance. Logistic regression identified risk factors for harboring a resistant strain,
harboring a resistant strain inferred to be due to de novo evolution, and harboring a resistant strain inferred to be acquired due to cross-transmission. The sharing of model
components across these 3 regression analyses is visualized for resistance to trimethoprim-sulfamethoxazole, gentamicin, amikacin, colistin, and beta-lactam/beta-
lactamase inhibitor agents. Represented as an UpSet plot, the heatmap indicates the possible membership patterns for an identified risk factor. For each phenotype,
the bar plot indicates the number of variables in each intersection, while the fill colors indicate the variable category. Full multivariable regression models are reported
in Supplementary Table 8. Abbreviations: BL/BLI, beta-lactam/beta-lactamase inhibitor; OR, odds ratio; TMP-SMX, trimethoprim-sulfamethoxazole.

catheter was associated with the spread of BL/BLI resistance.
Highlighting its potentially complex role in resistance dynamics,
cephalosporin exposure was positively associated with spread of
amikacin and BL/BLI resistance but negatively associated with
spread of TMP-SMX resistance, alongside the emergence and
spread of resistance to gentamicin. Collectively, these analyses
suggest that the traditional modeling approaches may mask im-
portant differences in the patient characteristics and clinical prac-
tices that drive the emergence and spread of antibiotic resistance.

DISCUSSION

To test the hypothesis that more refined insights into the driv-
ers of antibiotic resistance could be attained by considering the
distinct pathways to resistance acquisition, we developed a

phylogenetically informed approach, compiled as the open-
source R package phyloAMR. This easy-to-use tool enables
the partitioning of patients from a densely sampled cohort
into those putatively acquiring resistant strains via de novo evo-
lution or cross-transmission events. Applying phyloAMR to a
regional collection of CRKP ST258 isolates revealed differences
in the relative roles of emergence and spread for 5 critical anti-
biotics. We also identified differential impacts of ST258 clade,
antibiotic exposures, and clinical characteristics on the emer-
gence and spread of each resistance phenotype.

Modeling the acquisition of antibiotic resistance as a binary
state of phenotypic resistance (ie, resistant or susceptible) over-
simplifies and masks complexity. Our phylogenetic characteri-
zation revealed considerable differences in the contribution
of de novo evolution and cross-transmission to resistance
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proliferation in a regionally disseminating bacterial lineage, even
among antibiotics with comparable frequencies of resistance.
Differences in the dynamics of resistance evolution may reflect dif-
ferences in magnitudes of selection, the fitness and transmissibility
of resistant strains, or the contribution of within-host dynamics
[39]. These findings highlight the potential for whole-genome se-
quencing to enhance traditional epidemiological investigations
into precise microbial and host-associated factors that influence
the evolution and spread of resistance. Furthermore, phylogenetic
contextualization can be leveraged to inform the development of
innovative antimicrobial stewardship and infection prevention
strategies to account for the dynamics of resistance evolution
and spread to prolong the long-term efficacy of an antibiotic.
Our analysis revealed striking differences in the rates of resis-
tance emergence and spread across clades of epidemic lineage
CRKP ST258. Prior in vitro experimentation and epidemiologi-
cal studies have observed that resistance-conferring genotypes
can impose varying fitness costs across distinct genetic back-
grounds and that genetic background influences the propensity
for mutational resistance [40-43]. Genetic background’s influ-
ence on cross-transmission, as observed with colistin resistance,
may also influence the dynamics of resistance evolution [44].
Our analysis also identified clade-specific differences in the dy-
namics of resistance to meropenem-vaborbactam and imipe-
nem-relebactam, 2 recently approved BL/BLI agents that were
not yet clinically available in this population. Investigations of
phylogenetic clustering, like those presented in this manuscript,
could inform surveillance efforts by identifying genetic back-
grounds with a high propensity for resistance development or
spread across healthcare systems, as well as distinguishing mi-
crobial risk factors for resistance emergence and spread.
Integrating phylogenetic context into risk factor modeling
supports the emerging hypothesis that patient comorbidities
and medical practices exert distinct selective pressures for the
evolution [45] and cross-transmission of antibiotic-resistant
lineages [46]. Like prior studies [3-5], we observed that cognate
antibiotic exposure was often an independent risk factor for ac-
quisition of antibiotic resistance, potentially through selective
pressure. Our modeling additionally suggests that other noncog-
nate antibiotic exposures can also differentially drive the evolu-
tion of resistance. While we observed that antibiotic exposures
were predominantly identified as risk factors when modeling re-
sistance emergence, distinct antibiotic exposures and markers of
clinical severity, notably comorbidities and indwelling medical
devices, also contribute to the spread of resistant lineages.
Therefore, we postulate that antimicrobial stewardship interven-
tions could be tailored to the specific dynamics for each
antibiotic-resistant lineage while also considering the underlying
patient population. Leveraging the rich phylogenetic contextual-
ization of antibiotic resistance provides novel insights for devel-
opment of innovative strategies to detect and prevent the
emergence and spread of antibiotic-resistant organisms.

Our study has several limitations. First, our collection only
included clinical CRKP isolates, but not those from asymptom-
atic active surveillance, which could have facilitated a more
comprehensive view of resistance dynamics. This limitation is
anticipated to be mitigated due to the LTACH setting, in which
dense culture sampling is frequently performed for clinical
evaluation [47-49]. Second, we analyzed only select clinical fac-
tors that may select for resistance or increase the susceptibility
for acquiring a resistant strain. Future investigations should
evaluate additional medical comorbidities and exposure to
nonantibiotic medications. Third, our analysis was performed
on a complex, high-acuity LTACH population with a high fre-
quency of antibiotic exposures and use of indwelling medical
devices, which may limit the generalizability of our risk factor
analyses. Nonetheless, identifying the drivers of antibiotic resis-
tance in this setting is critical due to their high colonization bur-
den and the role these facilities play in the regional transmission
of antibiotic-resistant organisms [48-50]. Fourth, our ability to
detect precise and robust statistical associations between patient
characteristics and our phylogenetically informed resistance out-
comes, notably the emergence of resistance, was limited by a
small sample size. Finally, our study did not seek to directly re-
solve the evolutionary predictions of resistance with genotypic
data. Prior work in this population of resistance to colistin and
BL/BLI combinations suggests concordance between our evolu-
tionary predictions and the chromosomal and plasmid-mediated
mechanisms of resistance [7, 8], underscoring the feasibility of
our phylogenetic framework to generate inferences regarding
the evolution of antibiotic resistance.

Conclusions

Whole-genome sequencing and phylogenetic characterization of
antibiotic resistance in a densely sampled LTACH cohort im-
proved our understanding of how antibiotic resistance emerges
and spreads across a healthcare network. Applying a phylogenet-
ically informed approach can generate testable hypotheses re-
garding the pathways to acquisition of antibiotic resistance and
inform the development of targeted interventions to reduce
the global burden of resistance and extend the long-term efficacy
of antibiotics. Future studies, including additional clinical popu-
lations (eg, acute care hospitals, skilled nursing facilities) and mi-
crobial species, should investigate whether phylogenetics can
consistently reveal trends concerning how bacteria develop resis-
tance and how resistant bacteria spread to new hosts.

Supplementary Data

Supplementary materials are available at The Journal of Infectious
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materials consist of data provided by the author that are published
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authors. Questions or messages regarding errors should be ad-
dressed to the author.
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