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Background. To ameliorate the antibiotic resistance crisis, the drivers of resistance emergence and resistance spread must be 
better understood.

Methods. Whole-genome sequencing and susceptibility testing were performed on clinical carbapenem-resistant Klebsiella 
pneumoniae isolates collected from August 2014 to July 2015 across 12 long-term acute care hospitals. Ancestral state 
reconstruction partitioned patients with resistant strains into those that likely acquired resistance via de novo evolution or 
cross-transmission. Logistic regression was used to evaluate the associations between patient characteristics/exposures and 
these 2 pathways: resistance due to predicted within-host emergence of resistance and resistance due to predicted cross- 
transmission. This framework is available in the user-friendly R package, phyloAMR (https://github.com/kylegontjes/ 
phyloAMR).

Results. Phylogenetic analysis of 386 epidemic lineage carbapenem-resistant K. pneumoniae sequence type 258 isolates 
revealed differences in the relative contribution of de novo evolution and cross-transmission to the burden of resistance to 5 
antibiotics. Clade-specific variations in rates of resistance emergence and their frequency and magnitude of spread were 
detected for each antibiotic. Phylogenetically informed regression modeling identified distinct clinical risk factors associated 
with each pathway. Exposure to the cognate antibiotic was an independent risk factor for resistance emergence 
(trimethoprim-sulfamethoxazole, colistin, and novel beta-lactam/beta-lactamase inhibitors) and resistance spread 
(trimethoprim-sulfamethoxazole, amikacin, and colistin). In addition to antibiotic exposures, comorbidities (eg, stage IV +  
decubitus ulcers) and indwelling medical devices (eg, gastrostomy tubes) were detected as unique risk factors for resistance 
spread.

Conclusions. Phylogenetic contextualization generated insights and hypotheses into how bacterial genetic background, 
patient characteristics, and clinical practices influence the emergence and spread of antibiotic resistance.
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Antibiotic resistance is a significant public health challenge [1]. 
The development of infections with antibiotic-resistant patho
gens significantly reduces treatment options and clinical cure 

rates. Of greatest concern are multidrug-resistant lineages 
that have evolved resistance to multiple classes of antibiotics 
and disseminated worldwide [2].

The increasing problem of antibiotic resistance demands ur
gent clarity on the precise drivers of resistance proliferation. To 
this end, previous studies have sought to identify risk factors as
sociated with harboring a pathogen that exhibits resistance [3–5]. 
This approach has a significant limitation—it overlooks the 
distinct routes to the acquisition of resistance, notably de novo 
evolution (ie, the emergence of a unique resistant strain spon
taneously in an individual via chromosomal mutation or the 
acquisition of mobile genetic elements) and cross-transmission 
of circulating resistant lineages (ie, the acquisition of a resistant 
strain that is epidemiologically linked to other individuals) 
[6–8]. These pathways call for distinct intervention strategies. 
For example, judicious antimicrobial stewardship may be 
useful to reduce selection for de novo resistance evolution, 
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whereas measures to minimize cross-transmission include pa
tient cohorting, hand hygiene compliance, and contact isolation 
[9–12]. A deeper understanding of these pathways to resistance 
acquisition will facilitate the application of tailored prevention 
strategies and sharpen our comprehension of how bacterial ge
netic background, patient characteristics, and medical practices 
drive the emergence and spread of antibiotic resistance.

Here, we developed an approach that uses phylogenetic con
text to partition antibiotic-resistant isolates into those putative
ly derived from de novo evolution versus cross-transmission. 
We then applied this method to understand drivers of these 2 
pathways to resistance in the epidemic carbapenem-resistant 
Klebsiella pneumoniae (CRKP) sequence type 258 (ST258) lin
eage, using a comprehensive collection of clinical isolates and 
patient metadata collected over 1 year from a network of long- 
term acute care hospitals (LTACHs). The emergence and 
spread of 5 critical antibiotic resistance phenotypes were iden
tified, with the CRKP ST258 sublineage, antibiotic exposures, 
and patient clinical characteristics being differentially associat
ed with the emergence and spread of each phenotype.

METHODS

Sample Collection

Clinical CRKP isolates were obtained from 1 August 2014, to 25 
July 2015, at 12 southern California LTACHs [13]. Bacterial 
isolates from blood, respiratory, urine, and wound cultures 
identified as K. pneumoniae were tested for phenotypic carba
penem resistance using the 2015 Centers for Disease Control 
and Prevention criteria [13].

Clinical Metadata Collection

Clinical metadata were extracted from electronic medical re
cords, as described previously [13]. Patient demographics, 
medical comorbidities, and indwelling medical devices were re
corded at specimen collection, along with antibiotic exposures 
up to 30 days prior to specimen collection. Antibiotic exposure 
data were available only during a patient’s stay in the LTACH.

Antibiotic Susceptibility Testing

Antibiotic susceptibility testing was performed for 2 aminoglyco
sides, colistin, trimethoprim–sulfamethoxazole (TMP–SMX), and 
2 recently approved β-lactam/β-lactamase inhibitor (BL/BLI) 
combinations that were not clinically available at the time of speci
men collection. Susceptibility profiles for TMP–SMX and genta
micin were extracted from regional microbiology laboratory 
records. Susceptibility to amikacin, colistin, imipenem–relebac
tam, and meropenem–vaborbactam was determined using broth 
microdilution (SENSITITRE, Thermo Scientific) [14]. Antibiotic 
resistance was defined as a minimum inhibitory concentration 
within the intermediate or resistant category by the 2021 
Clinical and Laboratory Standards Institute interpretative criteria 

for all antibiotics except TMP–SMX [14], for which resistance was 
defined as a minimum inhibitory concentration ≥16/80 µg/mL 
(Supplementary Table 1). Resistance to BL/BLI agents was defined 
as resistance to imipenem–relebactam and/or meropenem– 
vaborbactam.

Whole-Genome Sequencing

Whole-genome sequencing of bacterial isolates was performed, 
as described previously [13]. The maximum-likelihood phylogeny 
was reconstructed from Gubbins-recombination filtered polymor
phic sites using a custom, in-house Snakemake pipeline (https:// 
github.com/Snitkin-Lab-Umich/phylokit) [15–24]. Details on 
whole-genome sequencing, variant calling, and phylogenetic tree 
reconstruction are present in Supplementary Methods.

Phylogenetic Analysis of Antibiotic Resistance Using Joint Ancestral 
State Reconstruction

We developed the open-source R package, phyloAMR, to study 
the emergence and spread of antibiotic resistance (https:// 
github.com/kylegontjes/phyloAMR).

PhyloAMR’s core function, asr, leveraged ancestral state re
construction to characterize the evolution of resistance across 
the phylogeny. The model with the lowest sample size–correct
ed Akaike information criterion (AICc) was used for joint 
ancestral state reconstruction using corHMM [25]. Edges on 
the phylogeny were evaluated to determine episodes where 
the trait continued (ie, susceptible→susceptible or resistant→ 
resistant), was gained (ie, susceptible→resistant), or was lost 
(ie, resistant→susceptible).

PhyloAMR’s phylogenetic tree traversal algorithm, asr_clus
ter_detection, inferred the evolutionary history of antibiotic re
sistance. This algorithm classifies trait-containing isolates as 
phylogenetic singletons (ie, evidence of de novo evolution of 
a trait) or members of a phylogenetic cluster of the trait (ie, ev
idence that the trait was inherited from a common ancestor of 
circulating trait-containing lineage). Resistant isolates with 
gain events inferred at the tip were classified as phylogenetic 
singletons. However, these isolates were eligible for classifica
tion as members of a phylogenetic cluster if a reversion event 
was detected at its parental node. Resistant isolates were classi
fied as members of a phylogenetic cluster if their ancestral gain 
event was shared with at least one additional resistant isolate. 
Resistant isolates that did not share an ancestral gain event 
were classified as phylogenetic singletons. Phylogenetic clusters 
where all isolates belonged to one patient were reclassified as 
redundant phylogenetic singletons.

To describe the evolutionary history of antibiotic resistance, the 
transitional data and phylogenetic clustering of each phenotype 
were characterized. Specifically, the frequency of resistance gain, 
loss, and continuation events was determined using phyoAMR’s 
asr_transition_analysis function. Descriptive statistics for phylo
genetic clustering were generated using phyloAMR’s asr_cluster_
analysis function (see Supplementary Materials).
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Testing for Heterogeneous Rates of Antibiotic Resistance Across Clades

To further evaluate the influence of genetic background on the 
evolution of antibiotic resistance, we tested whether differences 
in rates of resistance evolution exist across the 2 clades of 
ST258. To achieve this, we utilized phytool’s fitmultiMK func
tion, which implements a modified Markov model that allows 
for heterogeneous rates of discrete character evolution across 
user-specified regions on the phylogeny [26, 27]. For each phe
notype, a fitmultiMK model was constructed with a single 
regime, indicative of uniform rates of resistance evolution 
across the phylogeny. Next, a fitmultiMK model was construct
ed with 2 regimes, permitting each clade to have distinct rates 
of resistance evolution. The fit of the single- and multi-regime 
models was compared using the likelihood ratio test. Finally, 
hidden-rate modeling using corHMM, a data-driven approach, 
was performed to validate the presence of 2 distinct rate classes. 
Support for the existence of 2 rate classes was determined by 
comparing the AICc of the models. For these analyses, we fit 
2 model structures: equal rates and all rates differerent.

Identification of Risk Factors for Resistance Emergence and Spread

Logistic regression modeling was performed to evaluate the as
sociation between genetic background, patient demographics, 
and clinical variables with the primary resistance outcomes of 
crude resistance and our 2 phylogenetically informed classifica
tions of resistance. For each phenotype, patients with resistant 
isolates were partitioned as acquiring resistance via putative in 
vivo emergence (ie, phylogenetic singletons) or the acquisition 
of a strain belonging to a resistant lineage (ie, members of a 
phylogenetic cluster), presumably due to a cross-transmission 
event. For patients with more than one isolate, their first isolate 
was selected unless they contributed a later resistant isolate, in 
which case the resistant isolate was chosen. Patients contribut
ing only susceptible isolates served as the reference group.

First, logistic regression was performed to evaluate the asso
ciation between these outcomes and 3 explanatory variables: 
prior exposure to the resistance phenotype’s cognate antibiotic, 
exposure to dysbiotic antibiotics, and having an isolate belong
ing to clade I of ST258. Exposure to dysbiotic agents—drugs 
that increase the risk for disruption of the gut microbiota and 
Clostridioides difficile infection—was defined as having a histo
ry of exposure to at least one of the following antibiotics: cefe
pime, ceftaroline, ceftazidime, ceftriaxone, ciprofloxacin, 
ertapenem, metronidazole, levofloxacin, meropenem, imipe
nem, and piperacillin/tazobactam [28, 29]. Antibiotic exposure 
history was binarized as the receipt of ≥1 day of therapy in the 
past 30 days. Regression models evaluating the association be
tween our resistance outcomes and antimicrobial exposures 
were adjusted for patient age and sex.

Next, we performed data-driven, multivariable regression 
modeling to identify shared and unique risk factors for our re
sistance outcomes [30]. Eligible variables included patient 

demographics, clinical comorbidities, indwelling medical devic
es, and antibiotic exposure histories (Supplementary Table 2). 
First, unadjusted logistic regression was performed. Next, all var
iables with an unadjusted P-value of <.20 were included in a lo
gistic regression model. An iterative process removed variables if 
their P-value was >.10. After compiling this model, all initially 
ineligible variables were iteratively included in the model and re
tained if their P-value was <.10 .

Data Analysis and Visualization

All data analysis and visualization, unless otherwise stated, 
were performed using R version 4.5.0 [31]. The ggplot2 and 
ggnewscale packages were used to generate common figures 
[32, 33]. Phylogenetic visualizations were generated using 
ape, phytools, and ggtree [26, 34, 35]. Descriptive tables were 
created using tableone [36]. Forest plots were generated using 
forestplot [37]. Multipanel figures were constructed using cow
plot [38]. Code for this project is available at https://github. 
com/kylegontjes/phylogenetic-resistance-ms/.

RESULTS

Study Population

A total of 386 clinical CRKP ST258 isolates were collected from 
312 patients across 12 California LTACHs over nearly 12 
months (Supplementary Figure 1A and 1B). Fifty-five patients 
(17.6%) contributed more than one isolate during the study pe
riod (Supplementary Figure 1C). On first isolate collection, the 
median age was 72.7 years (interquartile range [IQR], 18.2 years), 
and 149 (47.8%) were female. Most patients had at least one in
dwelling medical device (87.8%), multiple medical comorbidities 
(64.4%), and received antibiotics in the 30 days preceding isolate 
collection (72.8%). The median LTACH length of stay before 
clinical culture was 21 days (IQR, 37 days). Cohort characteristics 
are provided in Supplementary Table 3.

Antibiotic Susceptibility Profiles

On application of clinical breakpoints, resistance was observed 
in 207 (53.6%) to TMP-SMX, 199 (51.6%) to gentamicin, 132 
(34.2%) to amikacin, 129 (33.4%) to colistin, and 56 (14.5%) 
to novel BL/BLI combinations (meropenem–vaborbactam, 39 
[10.1%]; imipenem–relebactam, 36 [9.3%]) (Supplementary 
Figure 1D). Minimum-inhibitory concentration distributions 
are reported in Supplementary Figure 2.

Whole-Genome Sequencing Revealed Variable Phylogenetic Clustering of 
Resistance

We implemented a phylogenetic algorithm to characterize the 
emergence and spread of antibiotic resistance in this densely 
sampled population (Figure 1A). Overlaying resistance on the 
phylogeny revealed numerous independent episodes of resis
tance emergence and spread for each antibiotic (Figure 1B). 
Quantification using our ancestral state reconstruction- 
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Figure 1. Phylogenetic characterization of resistance revealed differential patterns of resistance emergence and spread for 5 antibiotic phenotypes among clinical 
carbapenem-resistant Klebsiella pneumoniae sequence type 258 isolates. A, Ancestral character estimation was performed to characterize the phylogenetic clustering 
of antibiotic resistance. Phenotypes were binarized into susceptible and resistant using clinical breakpoints. Resistance was inferred at internal nodes using corHMM’s joint 
ancestral reconstruction algorithm. The phylogenetic tree was traversed from parent to child node to determine episodes of trait continuation (ie, susceptible→susceptible 
and resistant→resistant), gain events (eg, susceptible→resistant), and loss events (ie, resistant→susceptible). Resistant isolates were inferred as phylogenetic singletons if 
the resistant gain event was inferred at the tip with no history of susceptible reversion at their parental node or the resistant isolate did not share its gain event with another 
isolate. Resistant isolates were classified as members of a phylogenetic cluster if their gain event was shared with at least one additional resistant isolate. Lineages where 
all resistant isolates belonged to one patient were reclassified as redundant resistant singletons. This schematic was generated using BioRender. B, Resistance overlaid 
across the K. pneumoniae sequence type 258 phylogeny. C, Phylogenetic clustering of resistance, as inferred from the ancestral state reconstruction algorithm, was overlaid 
across the phylogenetic tree. D, Phylogenetic transition and (E) clustering statistics for each antibiotic. The frequency of phylogenetic occurrence accounts for the number of 
episodes a trait occurs across the phylogenetic tree (ie, clusters + singleton events) relative to the total number of possible events (ie, clusters + singleton events + isolates 
without the trait). The frequency of clustering characterizes the proportion of phylogenetic events that are phylogenetic clusters. Abbreviations: BL/BLI, beta-lactam/beta- 
lactamase inhibitor; NS, resistance; TMP-SMX, trimethoprim-sulfamethoxazole.
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Figure 2. Influence of genetic background and antibiotic exposures on the emergence and spread of resistant lineages. Logistic regression was used to analyze the association 
between our resistance outcomes and (A) having an isolate belonging to clade I of the sequence type 258 phylogeny, (B) exposure to cognate antibiotics, and (C ) exposure to dysbiotic 
antibiotics. For patients with more than one isolate, the first resistant isolate was retained. Each outcome (resistant, emergence, and spread) was compared with susceptible isolates. 
Exposure to an outcome’s cognate antibiotic was defined as follows: TMP-SMX for TMP-SMX, aminoglycoside exposure for gentamicin and amikacin, polymyxin exposure for colistin, 
and carbapenem exposure for resistance to BL/BLI agents. Exposure to a dysbiotic agent was defined as a history of exposure to at least one of the following antibiotics: cefepime, 
ceftaroline, ceftazidime, ceftriaxone, ciprofloxacin, ertapenem, metronidazole, levofloxacin, meropenem, imipenem, and piperacillin/tazobactam [30, 31]. Models for antibiotic expo
sures were adjusted for patient sex and age at culture collection. Abbreviations: BL/BLI, beta-lactam/beta-lactamase inhibitor; OR, odds ratio; TMP-SMX, trimethoprim- 
sulfamethoxazole.
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informed algorithm revealed differences in the number, size, 
and spatiotemporal overlap of resistant clusters for each antibi
otic (Figure 1C–E; Supplementary Figures 3 and 4), suggesting 
differential propensities for resistance to emerge and spread. 
Indeed, ancestral state reconstruction produced evolutionary 
models with evolutionary rates that varied in magnitude 
(Supplementary Table 4), further supporting differences in 
emergence rates across antibiotics. The ancestral states and 
phylogenetic clustering of each phenotype were overlaid on 
the phylogeny in Supplementary Figure 5.

In addition to differences across antibiotics, we also observed 
differences in phylogenetic clustering between the 2 major 
ST258 clades (Figure 2A; Supplementary Table 5). Testing for 
heterogeneity in evolutionary rates supported a role for the ge
netic background of ST258 in shaping the emergence and 
spread of antibacterial resistance, with differences between 
the 2 clades in the rates of resistance evolution and reversion 
to susceptibility observed for gentamicin, amikacin, colistin, 
and BL/BLI agents (Supplementary Table 6). Data-driven mod
eling of rate heterogeneity using corHMM also supported the 
existence of distinct evolutionary rates of resistance across 
this phylogeny (Supplementary Table 7). Lastly, we employed 
logistic regression to evaluate the association of ST258 clade 
with the emergence and spread of resistance. On unadjusted re
gression, clade I was positively associated with the following 
outcomes: amikacin resistance emergence (odds ratio [OR], 
2.49; 95% CI, 1.10–5.47), amikacin resistance spread (OR, 
9.53; 95% CI, 5.39–17.30), BL/BLI resistance emergence 
(OR, 2.34; 95% CI, 1.09–4.99) and BL/BLI resistance spread 
(OR, 21.19; 95% CI, 5.89–135.76). Conversely, clade II was pos
itively associated with the following outcomes: TMP-SMX resis
tance spread (OR, 7.50; 95% CI, 4.22–13.91), gentamicin 
resistance spread (OR, 10.99; 95% CI, 6.01–21.24), and colistin 
resistance spread (OR, 13.39; 95% CI, 5.72–39.27).

Phylogenetically Informed Risk Factor Analysis Revealed Shared and 
Unique Risk Factors Associated With the Emergence and Spread of 
Antibiotic Resistance

Having identified cases of resistance emergence and spread, we 
next explored whether differential risk factors exist across these 
2 groups: phylogenetic singletons (ie, resistance emergence) 
and clusters (ie, spread of circulating resistant lineages). 
Initially focusing on antibiotic use, we postulated that exposure 
to cognate antibiotics would be preferentially associated with 
selection for resistance emergence. After adjusting for age 
and sex, cognate antibiotic exposure was positively associated 
with resistance emergence for TMP-SMX (adjusted OR 
[aOR], 20.25; 95% CI, 1.74–470.26), colistin (aOR, 4.67; 95% 
CI, 1.47–13.69), and BL/BLI agents (aOR, 2.26; 95% CI, 1.05– 
4.88) (Figure 2B). Interestingly, cognate antibiotic exposure 
was also positively associated with resistance spread for 
TMP–SMX (aOR, 9.57, 95% CI, 1.76–177.86), colistin (aOR, 

2.65, 95% CI, 1.24–5.70), and amikacin (aOR, 2.01, 95% CI, 
1.07–3.77). As microbiome-disrupting antibiotics can increase 
susceptibility to colonization with multidrug-resistant organ
isms, we tested whether these antibiotics were associated with 
the spread of antibiotic-resistant lineages. No statistically sig
nificant, positive association was detected (Figure 2C).

To more broadly identify clinical and patient factors that 
drive the emergence and spread of antibiotic resistance, 
we performed data-driven, multivariable regression modeling 
(Table 1; Supplementary Table 8). In addition, models were con
structed that did not consider phylogenetic context (ie, phenotyp
ic resistance) to understand how phylogenetic contextualization 
might provide nuance beyond the standard approach. 
Inspection of multivariable models revealed risk factors with pos
itive associations for the emergence and spread of resistance 
(Figure 3). Cognate antibiotic exposures were detected in both re
sistance emergence and spread models. Trimethoprim–sulfame
thoxazole exposure was associated with the emergence and 
spread of resistance to TMP–SMX. Tobramycin and gentamicin, 
2 aminoglycoside antibiotics, were associated with the emergence 
and spread of amikacin resistance. Exposure to polymyxin antibi
otics was associated with colistin emergence and spread. 
Increased age was positively associated with the emergence and 
spread of resistance to BL/BLI agents.

Independent risk factors in resistant models tended to segre
gate into emergence or spread models, supporting the hypoth
esis that the standard approach imprecisely merges 2 distinct 
populations (Figure 3). Several variables were identified as in
dependent risk factors for the emergence of resistance, but 
not its spread. Antibiotic exposures were often associated 
with the emergence of resistance. Tigecycline was associated 
with emergence of resistance to TMP–SMX, colistin, and BL/ 
BLI agents. Exposure to carbapenems was associated with the 
emergence of resistance to BL/BLI agents but not spread. 
Additional risk factors that were unique to resistance emer
gence were detected, notably associations between congestive 
heart failure and the emergence of gentamicin resistance and 
malignancy with the emergence of amikacin resistance.

While models for resistance spread included exposure to an
tibiotics, additional proxies for complexity of care, notably pa
tient comorbidities and indwelling medical devices, were 
uniquely associated with resistance spread. The presence of 
stage IV+ decubitus ulcers was associated with the spread of re
sistance to TMP–SMX and gentamicin. Chronic respiratory co
morbidities, specifically the presence of chronic obstructive 
pulmonary disorder or chronic bronchitis, were associated 
with the spread of amikacin and BL/BLI resistance. This co
morbidity was also associated with the emergence of colistin re
sistance. Indwelling medical devices were also often associated 
with the spread of resistant lineages, with presence of a gastro
stomy and tracheostomy associated with the spread of TMP– 
SMX resistance, while presence of an indwelling urinary 
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catheter was associated with the spread of BL/BLI resistance. 
Highlighting its potentially complex role in resistance dynamics, 
cephalosporin exposure was positively associated with spread of 
amikacin and BL/BLI resistance but negatively associated with 
spread of TMP–SMX resistance, alongside the emergence and 
spread of resistance to gentamicin. Collectively, these analyses 
suggest that the traditional modeling approaches may mask im
portant differences in the patient characteristics and clinical prac
tices that drive the emergence and spread of antibiotic resistance.

DISCUSSION

To test the hypothesis that more refined insights into the driv
ers of antibiotic resistance could be attained by considering the 
distinct pathways to resistance acquisition, we developed a 

phylogenetically informed approach, compiled as the open- 
source R package phyloAMR. This easy-to-use tool enables 
the partitioning of patients from a densely sampled cohort 
into those putatively acquiring resistant strains via de novo evo
lution or cross-transmission events. Applying phyloAMR to a 
regional collection of CRKP ST258 isolates revealed differences 
in the relative roles of emergence and spread for 5 critical anti
biotics. We also identified differential impacts of ST258 clade, 
antibiotic exposures, and clinical characteristics on the emer
gence and spread of each resistance phenotype.

Modeling the acquisition of antibiotic resistance as a binary 
state of phenotypic resistance (ie, resistant or susceptible) over
simplifies and masks complexity. Our phylogenetic characteri
zation revealed considerable differences in the contribution 
of de novo evolution and cross-transmission to resistance 

Figure 3. Shared and unique risk factors for the emergence and spread of antibiotic resistance. Logistic regression identified risk factors for harboring a resistant strain, 
harboring a resistant strain inferred to be due to de novo evolution, and harboring a resistant strain inferred to be acquired due to cross-transmission. The sharing of model 
components across these 3 regression analyses is visualized for resistance to trimethoprim-sulfamethoxazole, gentamicin, amikacin, colistin, and beta-lactam/beta- 
lactamase inhibitor agents. Represented as an UpSet plot, the heatmap indicates the possible membership patterns for an identified risk factor. For each phenotype, 
the bar plot indicates the number of variables in each intersection, while the fill colors indicate the variable category. Full multivariable regression models are reported 
in Supplementary Table 8. Abbreviations: BL/BLI, beta-lactam/beta-lactamase inhibitor; OR, odds ratio; TMP-SMX, trimethoprim-sulfamethoxazole.
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proliferation in a regionally disseminating bacterial lineage, even 
among antibiotics with comparable frequencies of resistance. 
Differences in the dynamics of resistance evolution may reflect dif
ferences in magnitudes of selection, the fitness and transmissibility 
of resistant strains, or the contribution of within-host dynamics 
[39]. These findings highlight the potential for whole-genome se
quencing to enhance traditional epidemiological investigations 
into precise microbial and host-associated factors that influence 
the evolution and spread of resistance. Furthermore, phylogenetic 
contextualization can be leveraged to inform the development of 
innovative antimicrobial stewardship and infection prevention 
strategies to account for the dynamics of resistance evolution 
and spread to prolong the long-term efficacy of an antibiotic.

Our analysis revealed striking differences in the rates of resis
tance emergence and spread across clades of epidemic lineage 
CRKP ST258. Prior in vitro experimentation and epidemiologi
cal studies have observed that resistance-conferring genotypes 
can impose varying fitness costs across distinct genetic back
grounds and that genetic background influences the propensity 
for mutational resistance [40–43]. Genetic background’s influ
ence on cross-transmission, as observed with colistin resistance, 
may also influence the dynamics of resistance evolution [44]. 
Our analysis also identified clade-specific differences in the dy
namics of resistance to meropenem–vaborbactam and imipe
nem–relebactam, 2 recently approved BL/BLI agents that were 
not yet clinically available in this population. Investigations of 
phylogenetic clustering, like those presented in this manuscript, 
could inform surveillance efforts by identifying genetic back
grounds with a high propensity for resistance development or 
spread across healthcare systems, as well as distinguishing mi
crobial risk factors for resistance emergence and spread.

Integrating phylogenetic context into risk factor modeling 
supports the emerging hypothesis that patient comorbidities 
and medical practices exert distinct selective pressures for the 
evolution [45] and cross-transmission of antibiotic-resistant 
lineages [46]. Like prior studies [3–5], we observed that cognate 
antibiotic exposure was often an independent risk factor for ac
quisition of antibiotic resistance, potentially through selective 
pressure. Our modeling additionally suggests that other noncog
nate antibiotic exposures can also differentially drive the evolu
tion of resistance. While we observed that antibiotic exposures 
were predominantly identified as risk factors when modeling re
sistance emergence, distinct antibiotic exposures and markers of 
clinical severity, notably comorbidities and indwelling medical 
devices, also contribute to the spread of resistant lineages. 
Therefore, we postulate that antimicrobial stewardship interven
tions could be tailored to the specific dynamics for each 
antibiotic-resistant lineage while also considering the underlying 
patient population. Leveraging the rich phylogenetic contextual
ization of antibiotic resistance provides novel insights for devel
opment of innovative strategies to detect and prevent the 
emergence and spread of antibiotic-resistant organisms.

Our study has several limitations. First, our collection only 
included clinical CRKP isolates, but not those from asymptom
atic active surveillance, which could have facilitated a more 
comprehensive view of resistance dynamics. This limitation is 
anticipated to be mitigated due to the LTACH setting, in which 
dense culture sampling is frequently performed for clinical 
evaluation [47–49]. Second, we analyzed only select clinical fac
tors that may select for resistance or increase the susceptibility 
for acquiring a resistant strain. Future investigations should 
evaluate additional medical comorbidities and exposure to 
nonantibiotic medications. Third, our analysis was performed 
on a complex, high-acuity LTACH population with a high fre
quency of antibiotic exposures and use of indwelling medical 
devices, which may limit the generalizability of our risk factor 
analyses. Nonetheless, identifying the drivers of antibiotic resis
tance in this setting is critical due to their high colonization bur
den and the role these facilities play in the regional transmission 
of antibiotic-resistant organisms [48–50]. Fourth, our ability to 
detect precise and robust statistical associations between patient 
characteristics and our phylogenetically informed resistance out
comes, notably the emergence of resistance, was limited by a 
small sample size. Finally, our study did not seek to directly re
solve the evolutionary predictions of resistance with genotypic 
data. Prior work in this population of resistance to colistin and 
BL/BLI combinations suggests concordance between our evolu
tionary predictions and the chromosomal and plasmid-mediated 
mechanisms of resistance [7, 8], underscoring the feasibility of 
our phylogenetic framework to generate inferences regarding 
the evolution of antibiotic resistance.

Conclusions

Whole-genome sequencing and phylogenetic characterization of 
antibiotic resistance in a densely sampled LTACH cohort im
proved our understanding of how antibiotic resistance emerges 
and spreads across a healthcare network. Applying a phylogenet
ically informed approach can generate testable hypotheses re
garding the pathways to acquisition of antibiotic resistance and 
inform the development of targeted interventions to reduce 
the global burden of resistance and extend the long-term efficacy 
of antibiotics. Future studies, including additional clinical popu
lations (eg, acute care hospitals, skilled nursing facilities) and mi
crobial species, should investigate whether phylogenetics can 
consistently reveal trends concerning how bacteria develop resis
tance and how resistant bacteria spread to new hosts.

Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online (http://jid.oxfordjournals.org/). Supplementary 
materials consist of data provided by the author that are published 
to benefit the reader. The posted materials are not copyedited. The 
contents of all supplementary data are the sole responsibility of the 
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authors. Questions or messages regarding errors should be ad
dressed to the author.

Notes

Data availability. Code, results, and select deidentified data 
can be found at https://github.com/kylegontjes/phylogenetic- 
resistance-ms.
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