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A new IRMA module for analyzing whole-genome sequences

from human metapneumovirus
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ABSTRACT The large amount of genetic diversity in human metapneumovirus makes
reference-based alignments difficult. We created a new module for the Iterative
Refinement Meta-Assembler (IRMA) that performs alignment and consensus sequence
generation without requiring subtyping and can handle duplications in the glycoprotein.
This module increases the feasibility of genomic surveillance.
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H uman metapneumovirus (HMPV) causes a significant number of respiratory
infections each year, especially in young children (1). HMPV is genetically diverse
with two antigenically distinct lineages (A and B) that cocirculate (2, 3). These two
lineages have each split into two sublineages (A1, A2, B1, and B2), and A2 has further
split into A2.1 and A2.2 (4). Most of the genetic diversity among subtypes is in G, the
glycoprotein (5, 6). G is also highly variable within subtypes, with strains containing
eithera 111 or 180 nucleotide duplication currently circulating within A2.2 (7, 8).

There has been limited whole-genome sequencing of HMPV, despite potential public
health benefits of genomic surveillance. One of the barriers to whole-genome sequenc-
ing is efficiently analyzing the sequence data due to the large amount of genetic
diversity. Current library preparation methods do not require subtyping (9-11). However,
the genetic diversity of HMPV hinders the ability to use a single reference to accurately
assemble genomes for all samples.

To address this problem, we have developed an HMPV IRMA module. IRMA was
developed for assembling highly variable RNA viruses (12). IRMA is reference-based, but
it iteratively gathers reads and edits the reference genome, minimizing the effects of
distance from the initial reference. It also allows for a different reference genome for each
subtype, making prior subtyping unnecessary. To create the reference, we downloaded
all whole genomes available on GenBank (accessed Oct. 18, 2024, “Metapneumovirus
hominis”). Sequences were aligned using MAFFT v7 (13), and IQ-TREE 2 (14) was used

TABLE 1 The number of genomes used to create the consensus reference sequences?

Lineage Number of genomes
Al 15

A2.1 47

A2.2 140

A2.2(111) 103

A2.2(180) 6

B1 92

B2 118

Total 521

“Number in parentheses is the size of the G duplication.
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FIG 1 The IRMA module creates complete and high-quality HMPV consensus genomes. (A) Genome completeness. The number of reads aligned to the final

reference versus the proportion of nucleotides present in the consensus genome. The color is the reference genome used for each sample. (B) Quality control

metrics from Nextclade for samples with at least 75% coverage of the genome.

to create a phylogeny. We used previously typed samples and the phylogeny to assign
samples to A1, A2, A2.1, A2.2, A2.2 +111 nt duplication, A2.2 +180 nt duplication, B1, or
B2 (Table 1). For each sublineage, we created a plurality consensus sequence using EMBL
consensus generator (15) and a hidden Markov model using IRMA.

To test the IRMA pipeline, we sequenced 181 samples from the Investigating
Respiratory Viruses in the Acutely Ill (IVY) study (November 2024-April 2025) (16, 17)
and from the Household Influenza Vaccine Effectiveness (HIVE ) study (2011-2022) (18).
Nasal swabs were sequenced using the Respiratory Virus Oligos Panel v2 on an lllumina
NextSeq 2000 (2 x 300, P1 chemistry).

The consensus sequences generated by IRMA were complete or nearly complete
genomes (Fig. 1A). A2.1, A2.2, B1, and B2 lineages were present (19). Lineages were
consistent with previous qPCR subtyping (A or B) (20). We were able to detect the 111-nt
(42 samples) and 180-nt (11 samples) insertions in a subset of A2.2 samples, showing
that the IRMA module can handle samples with or without a duplication. No systematic
issues were detected in the alignments (Fig. 1B). The IRMA module is suitable for lllumina
and Nanopore sequencing. For Nanopore sequencing, the config file would need to be
altered (see Flu module in IRMA for example). For Illumina sequencing, read lengths
shorter than 300 bp compromise accurate detection of duplications.
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The module and consensus sequences are available at https://github.com/laurin-
glab/HMPV_IRMA_module. To use, place the file inside the modules folder of IRMA and
follow the instructions at https://wonder.cdc.gov/amd/flu/irma/index.html. Sequences
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are available at BioProject PRINA1304962.
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